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Multiple metrics to characterize air pollution are available for use in environmental health analyses in addition to the standard Air
Quality System (AQS) pollution monitoring data. These metrics have complete spatial-temporal coverage across a domain and are
therefore crucial in calculating pollution exposures in geographic areas where AQS monitors are not present. We investigate the
impact that two of these metrics, output from a deterministic chemistry model (CMAQ) and from a spatial-temporal downscaler
statistical model which combines information from AQS and CMAQ (DS), have on risk assessment. Using each metric, we analyze
ambient ozone’s effect on low birth weight utilizing a Bayesian temporal probit regression model. Weekly windows of susceptibility
are identified and analyzed jointly for all births in a subdomain of Texas, 2001–2004, and results from the different pollutionmetrics
are compared. Increased exposures during weeks 20–23 of the pregnancy are identified as being associated with low birth weight by
the DSmetric. Use of the CMAQoutput alone results in increased variability of the final risk assessment estimates, while calibrating
the CMAQ through use of the DSmetric provides results more closely resembling those of the AQS.TheAQS data are still preferred
when available.

1. Introduction

Lowbirthweight, defined as less than 2,500 grams (g) at birth,
is associated with immediate and long-term health effects,
including death. Low birth weight affects around 8% of all
births in the United States (US) with over two-thirds of those
cases associated with premature birth [1]. For term births
who result in low birth weight, fetal growth restriction is
thought to be the major contributing factor, associated with a
number of factors including smoking during the pregnancy,
alcohol/drug abuse, birth defects, and certain socioeconomic
factors [2–4]. Long-term health effects of low birth weight
include type-2 diabetes, high blood pressure, heart disease,
hearing/vision problems, and intellectual disabilities.

Previous ambient air pollution/birth weight epidemio-
logic studies have focused on low birth weight as a binary
variable as well as working with continuous birth weight

directly. Common analyses involve calculating pollution
exposures based on active pollution monitors near the res-
idence at delivery of the mother. Trimester averages are the
most common time period of interest in these studies [5–
12], while some studies have incorporated monthly expo-
sure averages throughout the pregnancy [13, 14]. A recent
literature review by Šrám et al. [15] concluded that for birth
weight, there was a need for future studies “to clarify themost
vulnerable periods of pregnancy and the role of individual
pollutants.” In this paper, we thoroughly investigate these
vulnerable periods in terms of ambient ozone exposure.

Previous studies have examined a number of pollutants
and time frames with varying results. Carbon monoxide
exposure during multiple periods of the pregnancy was
shown to adversely affect the birth weight of the child in
multiple studies [5, 7–9, 11], withmost of the results indicating
the first trimester as themost susceptible time. Sulfur dioxide
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was also consistently found to decrease birth weight in
multiple studies during various trimesters and months of
pregnancy [6, 8, 9, 12, 13]. A number of studies have also
uncovered an adverse association between total suspended
particles and birth weight [6, 8, 12].The relationship between
birth weight and ozone exposure is less clear.

In this paper, we utilize a Bayesian statistical model for
low birth weight, which has the ability to more accurately
identify critical periods during the pregnancy where
increased exposure to ambient ozone concentrations signi-
ficantly increases the probability of low birth weight of the
child.Thismodel was originally developed for a pretermbirth
analysis byWarren et al. [16].We allow for amore continuous
form of pollution exposure throughout the pregnancy than
typically considered in the low birth weight context through
the use of weekly ambient averages. Working in the Bayesian
setting allows us to properly characterize the uncertainty
in our model parameters while also helping to control the
multicollinearity introduced by jointly considering weekly
effects in the model.

We begin the analysis by assigning ozone pollution
exposures to each woman in a subdomain of Texas, based
on residence at delivery, during each week of the pregnancy
for three different pollution metrics. These metrics include
the standard Air Quality System (AQS) data, the Community
MultiscaleAirQuality (CMAQ) chemistrymodel output, and
the newly developed downscaler (DS) pollution model out-
put. The AQS data are the most commonly used in epidemi-
ologic studies and represent observedmonitoring data across
the state, while the CMAQ output is based on a deterministic
model which relies on meteorological input and pollutant
specific chemistry expertise. The DS process calibrates the
CMAQ output by statistically combining it with the AQS
data in order to provide estimates of the AQS observations
in regions lacking spatial-temporal monitor coverage. We
investigate the use of the CMAQ and DSmetrics with respect
to risk assessment estimation and compare their results with
results seen using the AQS data.

This metric comparison analysis will help to inform
future studies which may require the use of alternative pol-
lution output in rural or undeveloped geographical regions
of interest. The alternate pollution metrics have complete
spatial-temporal coverage over a geographic domain of inter-
est and can therefore be very useful in determining exposures
for people in areas not represented by AQS pollution moni-
tors. It is important to assess the impact these metrics have
on risk assessment estimation in the environmental health
settings, as they can lead to the analysis of populations of
people who have previously been excluded frommost typical
analyses due to their large distances from a nearby monitor.
Comparing the health effect estimation results from use of
these metrics with respect to the AQS data results has not
been considered previously in this setting but can potentially
have a large impact on the direction of future research.

For each exposure dataset, we fit the continuous pollution
exposure model, and critical weeks during the pregnancy
are analyzed. We compare the results from each metric,
and the similarities and differences between the identified
critical periods of the pregnancy are discussed. Based on
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Figure 1: Texas Department of State Health Services health service
region map. Health service region 11 is considered in the analysis.

these results, we extend the dataset to incorporate women
who did not reside near an active pollution monitor within
the region through use of the DS output, which includes
ozone estimates across the region in space and time from
2001–2004. Susceptible periods during the entire pregnancy
are then analyzed using the full birth dataset from this region.

In Section 2, we discuss the data used in the analysis, the
statistical model, and the applicationmethod.The results and
discussion are presented in Section 3. We close in Section 4
with the conclusions.

2. Materials and Methods

2.1. Data Description. We analyze a dataset of full birth
records from all births that occurred in the TexasDepartment
of State Health Services (TDSHS) health service region 11,
2001–2004 (Figure 1). Adverse effects of ambient pollution
exposure were recently investigated in this domain with
respect to common cardiac congenital anomalies by Warren
et al. [17]. In the analysis, we include full term births with
completed gestational weeks between 37 and 44, inclusively.
Each pregnancy must have also resulted in a live, singleton
birth. Women with missing demographic covariates such as
education level, age, and race/ethnicity are excluded from the
analysis. The data were geocoded to the residence at delivery
by the Geographic Information System group at the TDSHS.
In total, we have 37,331 women with complete information
in the region while 1,264 of these women lived within 8.49
kilometers (km) of an ozone monitor which was active daily
during their pregnancy. We consider 8.49 km based on the
layout of the 12 km × 12 km CMAQ grid. Further discussion
is presented in Section 2.3.

The Air Quality System (AQS) monitoring data are
obtained for the maximum daily 8-hour average ozone
pollutant (parts per million (ppm)) in Texas from 2001 to
2004. The maximum daily 8-hour average values are used
to determine the attainment status of nationally recognized
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standards.TheAQS compiles air pollution data frommultiple
sources/monitors across the US and the data are used by
many agencies, local and federal, tomake air quality decisions
(http://www.epa.gov/ttn/airs/airsaqs/basic info.htm). There
were 78 active monitors located in Texas from 2001 to 2004
with 6 located in TDSHS health service region 11.

The Community Multiscale Air Quality (CMAQ) deter-
ministic chemistry model output is available for the maxi-
mum daily 8-hour average ozone pollutant (ppm) in 2001–
2004 across Texas.The ozone estimates are provided daily on
a 12 km × 12 km grid over Texas with each estimate represent-
ing the grid average. CMAQ output is provided in areas and
times where observed pollution data are not directly available
and allow for researchers to analyze the pollution composi-
tion in these areas.TheCMAQmodel is able to provide pollu-
tion estimates in geographic areas lacking sufficient monitor-
ing data by relying on scientific expertise in air quality mod-
eling and atmospheric science. CMAQ output is currently
used for research and regulatory purposes across the coun-
try (http://ie.unc.edu/cempd/products/cmaq/overview.cfm).
There were 4,786 grid point estimates located in Texas from
2001–2004 with 449 located in TDSHS health service region
11.

The Environmental Protection Agency (EPA) sponsored
downscaler (DS) pollution output was developed by Berrocal
et al. [18] and is publicly available at http://www.epa.gov/
esd/land-sci/lcb/lcb faqsd.html. The DS ozone estimates are
provided daily from 2001 to 2004 (though not in all areas
in 2001) at the census tract level and represent the 8-hour
daily maximum ambient concentration (ppm) at that point.
The process used to create the estimates relies on a spatial-
temporal statistical model which combines the CMAQ out-
put and AQS data to form estimates of the AQS data in areas
where the data are not collected. The DS model is presented
in a regression framework where the AQS observation is
regressed on the closest CMAQ grid observation. The usual
regression intercept and slope parameters are allowed to vary
spatially and temporally to provide more flexible estimation
across a domain of interest. The AQS observations are then
predicted across the domain given the closest CMAQ value
to the location of interest. There are known errors in the
CMAQ data due to initial and boundary conditions, model
parameterizations, mathematical approximations, and in the
inputs that propagate through the model. The DS statistical
model sets out to correct these errors through calibration
of the CMAQ output while providing full spatial-temporal
coverage over the US. Like the CMAQ output, the DS model
output is provided in areas and times where observed pollu-
tion data are not directly available, making it very useful for
pollution researchers.There were 4,388DS locations in Texas
from 2001 to 2004 with 341 located in TDSHS health service
region 11.

2.2. Statistical Model. Wemodel low birth weight as a binary
variable taking a value of one if birth 𝑖 resulted in a birth
weight of less than 2,500 g and zero otherwise. Conditional
on the included model parameters, we assume independ-
ence between births such that 𝑌
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𝑖

ind
∼ Bernoulli(𝑝

𝑖
). The

probability that pregnancy 𝑖 results in low birth weight is
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where Φ−1(⋅) is the inverse cumulative distribution function
of the standard normal distribution, 𝑔𝑎

𝑖
is the gestational

age in completed weeks of person 𝑖, and 𝑛 is the analysis
sample size. The form of the function in (1) was shown to
be successful in identifying critical windows of pollution
exposure in terms of preterm birth by Warren et al. [16].

The statistical model is presented within the Bayesian
framework. Bayesian methods differ from classical methods
by treating the unknownmodel parameters as random quan-
tities as opposed to fixed values. Before data are collected,
a prior distribution is placed on the parameters which
reflects the prior knowledge regarding the possible values of
the parameters. After data collection, our prior beliefs are
updated through use of the posterior distribution.

The posterior distribution is based on Bayes’ Theorem
[19] which, in terms of probability distribution functions, is
given as 𝑓(𝜆|Y) = 𝑓(Y|𝜆)𝑓(𝜆)/𝑓(Y), where 𝜆 is the vector
of unknown model parameters, Y is the vector of responses
from the women in the analysis, 𝑓(Y|𝜆) is the likelihood of
the data based on independent Bernoulli responses, 𝑓(𝜆) is
the prior distribution for the model parameters, and 𝑓(Y) is
the marginal distribution of the observed data. The theorem
implies that the most current information regarding the
unknown parameters (given the data) is proportional to the
usual likelihood multiplied by the prior distribution. Infer-
ence for the unknown parameters is conducted by summariz-
ing the posterior distribution with the use of basic descriptive
measures such as the mean, median, standard deviation,
and distribution quantiles. If there is a lack of overall prior
information regarding a model parameter, a vague prior
distribution can be placed on the parameter and results
obtained from the model fit will often closely match results
from a classical statistical analysis. We utilize this method for
the hyperparameters introduced in the model specification.

We prefer the Bayesian setting in the analysis due to the
efficient algorithms that are available for fitting the model.
The hierarchical nature of our model lends well to the use
of Bayesian methods over the classical methods. The model
fitting process is simplified through use of these Bayesian
sampling techniques, while the results closely resemble those
of a classical analysis through the use of vague prior distribu-
tions.

The 𝛽 parameters are the coefficients that relate the
covariates of interest to the probability of low birth weight.
The x

𝑖
vector contains birth specific covariate information

including the completed number of gestational weeks, year
of birth, season of birth, average temperature in the state
from the date of birth, average dewpoint in the state from
the date of birth, maternal age group, education level, and
race/ethnicity. The age groups in the analysis include 10–
19, 20–24, 25–29, 30–34, 35–39, and 40+. The considered
education levels are less than high school, high school, and
greater than high school education. The racial/ethnic groups

http://www.epa.gov/ttn/airs/airsaqs/basic_info.htm
http://ie.unc.edu/cempd/products/cmaq/overview.cfm
http://www.epa.gov/esd/land-sci/lcb/lcb_faqsd.html
http://www.epa.gov/esd/land-sci/lcb/lcb_faqsd.html
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in the analysis are non-Hispanic black, non-Hispanic white,
non-Hispanic other, and Hispanic. We model the average
temperature and dewpoint measurements using a cubic B-
spline with four degrees of freedom.

The 𝑧{𝑡
𝑖
(𝑗), s
𝑖
} terms represent the average ambient ozone

amount at location s
𝑖
on calendar week 𝑡

𝑖
(𝑗), corresponding

to the week of pregnancy for woman 𝑖. We allow the number
of weeks of experienced pollution to vary for each woman,
up to the point of the gestational age of the birth, in order
to prevent exposure occurring after the birth of the child to
affect the resulting probability of low birth weight.

The association between the experienced pollution and
the probability of low birth weight is described through the
𝜃 = (𝜃

1
, . . . , 𝜃

44
)
𝑇 parameters. In a typical statistical analysis,

introducing an effect for eachweek of pregnancy in amultiple
probit regression analysis leads tomulticollinearity due to the
correlation seen in theweekly averages.Thismulticollinearity
causes the standard errors associated with the parameter
estimates to be inflated and allows for the possibility that
the signs of the parameter estimates could be incorrect. We
avoid this issue by introducing a prior distribution for the 𝜃
vector which allows the effects to be correlated through the
weeks thereby controlling the inflation of the standard errors
and allowing for proper estimation of the effects. The prior
is specified such that 𝜃 ∼ MVN(0, 𝜎2

𝜃
Σ(𝜙)), where Σ(𝜙)

𝑖𝑗
=

Corr(𝜃
𝑖
, 𝜃
𝑗
) = exp{−𝜙|𝑖 − 𝑗|}. This exponential structure

allows effects of exposures that are separated by only a few
weeks to be more highly correlated and for that correlation
to decrease, as the number of weeks between the exposures
increases.

We complete the model specification by assigning prior
distribution for the model parameters. The 𝛽 parameters
are given independent normal distributions with large, fixed
prior variance.The 𝜙 parameter, which controls the temporal
smoothness of the 𝜃 parameters, is given a Uniform(0.0001,3)
prior distribution.The overall variance parameter,𝜎2

𝜃
, is given

an Inverse Gamma(3,2) prior distribution which leads to
conjugacy in the model.

2.3. Application Preparation. Webegin the analysis by assign-
ing ambient ozone air pollution exposure amounts for each
week during the pregnancy for every permissible birth in
TDSHS health service region 11. We use the residence at
delivery as the location of interest and match these locations
with the closest active AQS pollution monitor on each day
of the pregnancy. A number of studies have investigated
the issue of maternal mobility during the pregnancy [20,
21]. These studies suggest that a majority of women do not
move during the pregnancy, and those who do move only
travel relatively short distances. Therefore, the introduced
misclassification error is likely small.

For this initial analysis, births where there were no
active monitors within 8.49 km (5.28 miles) of the residence
at delivery, for any of the days during the pregnancy, are
excluded from the analysis.We choose this distance because it
corresponds to themaximumdistance seenwhenworking on
a 12 km × 12 km grid (CMAQ) and also represents a common
distance used in previous studies [22]. Once we create these

daily exposure amounts, we average the daily readings to
obtain weekly pregnancy averages.

Next, we repeat this process using the CMAQ and DS
pollution output. Each residence at delivery in the dataset has
a CMAQ and DS reading within 8.49 km due to the complete
spatial coverage of these metrics. As a result, none of the
women are removed as due to the lack of daily pollution
information during the pregnancy. Once this dataset is
complete, we create a subset of the data, such that it includes
only the women who are also included in the AQS dataset.
Therefore, these datasets allow for direct comparison with
the AQS dataset since all included information is identical
other than the pollution exposure amounts. These datasets
allow us to compare the health effect estimation results of the
CMAQ and DS output across the region with respect to the
AQS monitoring data results.

3. Results and Discussion

All results are presented for models fit in the Bayesian setting
and based on 50,000 samples from the posterior distribution
of each parameter of interest after a burnin period of 50,000
iterations.The fitting of each model is carried out using the R
statistical software package [23].

3.1. Pollution Metric Analysis. For the initial analysis, each
exposure metric dataset contains 1,264 births across TDSHS
health service region 11. About 2.3% of these full term births
were low birth weight. We fit the model in (1), allowing for
the pollution exposure estimates to change based on use of
the AQS, CMAQ, and DS metrics. We modify (1), such that
only the first 43 weeks of pregnancy are considered. Due to
the smaller sample size in the region, we do not observe any
births with a gestational age of 44 weeks and therefore cannot
estimate 𝜃

44
in (1).

Figure 2 displays the graphical results from the model
fit with each of the metrics. Each displayed effect represents
the increase or decrease in 𝑧-score given a one standard
deviation increase in the standardized pollution exposure
during the relevant week of pregnancy. A significantly
increased/decreased 𝑧-score leads directly to a significantly
increased/decreased probability of low birth weight. Pos-
terior medians and 95% credible intervals are displayed.
Each analyzed dataset represents the same group of women
and covariate information, with only the exposure amounts
differing due to using the different exposure estimates.

TheCMAQandDS results differ from each other in terms
of statistical significance and also from the AQS results. We
can, however, see a similar trend in the estimated weekly
effects across all metrics, with the weeks 19–25 appearing
to be elevated in each of the plots. The DS risk assessment
results agree much more with the AQS results overall while
also identifying statistically significant effects in weeks 20–23
of pregnancy. Based on the DS results, there is sufficient evi-
dence to suggest that increased ozone exposure during weeks
20–23 of pregnancy significantly increase the probability of
low birth weight.The average length of the presented credible
intervals for the model fit with each metric is 0.175 (AQS),
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Figure 2: Susceptible windows of exposure results from themodel in (1) using the AQS, DS, and CMAQ exposuremetrics. Posterior medians
and 95% credible intervals are displayed. Significant effects are shown with dotted lines and solid circles.

0.173 (DS), and 0.194 (CMAQ).Thevariability associatedwith
the CMAQ risk assessment results is increased compared to
the results of the other metrics. The CMAQ results are also
less similar to the AQS results overall.

A possible explanation for these observed results is that
the DS output is on average much more spatially dense
across heavily populated regions of Texas than the AQS active
monitors as well as the CMAQ 12 km × 12 km grid points.
Table 1 displays the summary statistics regarding the distance
from a pollution estimate (AQS: active monitor; CMAQ: grid
point; DS: census tract) for all women in Texas from 2001
to 2004 for each pollution metric. It is clear that the DS
model output provides exposure estimates much closer to the
women’s residences in Texas than the AQS active monitors.

As a result, we expect the DS and AQS results to be very
similar, with a clearer signal shown in the DS output.

3.2. Extended DS Model Results. As a result of the findings
in Section 3.1, we are able to extend the analysis to include
all available births in TDSHS health service region 11 from
2001–2004, not only those who lived close to an active AQS
pollution monitor during their pregnancy. We are now able
to include these women since the DS estimates are available
daily over the entire state and appear to estimate the risk
assessment similarly as the AQS data as well as provide
shorter credible intervals on average than the uncalibrated
CMAQ metric. Therefore, no woman is excluded from the
analysis due to lack of ambient ozone data near her residence
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Table 1: Statistical summaries describing the distribution of dis-
tances (km) from the closest pollution estimate for each pollution
data (AQS) and model output (CMAQ, DS) source.

Metric Mean SD Percentiles
0.025 0.50 0.975

AQS 42.19 90.02 1.65 11.92 390.90
CMAQ 4.68 1.91 1.04 4.78 7.96
DS 1.67 2.21 0.17 0.95 8.06

at delivery. As a result, our sample size is increased from 1,264
to 37,331.

Table 2 displays the included covariate results from the
model in (1) using the DS weekly ozone exposures for all
women in the region. These results suggest that there are a
number of important factors which help to determine low
birth weight status.

Giving birth in the fall season, with respect to winter,
appears to significantly increase the probability of low birth
weight for the child. Female babies are more likely to be
born low birth weight, and as gestational age increases, the
probability of low birth weight decreases. Black mothers
(non-Hispanic) appear to have a higher probability of having
a child with low birth weight than white mothers (non-
Hispanic). As education level increases, the probability of low
birth weight of the child significantly decreases. This effect is
also true for the number of previous live births by a woman
in the analysis.

Along with statistical model in (1), we also present results
from two competing models. The presented models are as
follows:

(i) Model 1: Bayesian probit regression model in (1)
for low birth weight with weekly pollution expo-
sure effects and prior temporal correlation structure
assigned to the resulting parameters;

(ii) Model 2: the standard trimester average multiple
probit regression model where pollution exposures
from each averaged trimester of pregnancy are input
as covariates of interest;

(iii) Model 3: multiple probit regression model where
weekly exposures are included jointly, and multi-
collinearity is ignored.

Allmodels control for the samematernal/seasonal covari-
ates of interest. Model 2 represents the model most often
found in the statistical epidemiologic literature where the risk
of low birth weight is described by the exposures experienced
during each trimester of pregnancy. Model 3 represents a
naive attempt at jointly estimating the weekly effects and
serves as a baseline to show what is gained by considering
models 1 and 2.

Figure 3 shows the graphical results from Model 1 using
the extended DS dataset. Figure 4 shows the graphical results
for all models, displayed on the same scale for comparison
purposes.The results fromModel 2 suggest that an increased
exposure to ozone during the second trimester significantly
increases the probability of low birth weight for a woman
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Figure 3: Susceptible windows of exposure results from the model
in (1) using the DSweekly exposures for all women in TDSHS health
service region 11. Posterior medians and 95% credible intervals are
displayed. Significant effects are shown with dotted lines and solid
circles.

residing in the region during 2001–2004. No statistically
significant effects are seen in trimesters one and three. The
Model 1 results, however, have the ability to more accurately
describe this susceptible period in terms of weekly effects.
We can now see that weeks 20–22 actually significantly
increase the probability of low birth weight, as ambient ozone
exposure increases. These significant results are shown more
clearly in Figure 3. Identification of these weeks is alsomissed
by Model 2 which can only detect trimester effects.

Simply entering weekly effects into a multiple probit
regression setting (Model 3) does not produce reasonable
results in terms of critical window identification. The mul-
ticollinearity associated with the weekly exposures makes it
impossible to differentiate true signal fromnoise in theModel
3 results. The uncertainty associated with the parameter
estimates is greatly increased due to the multicollinearity
issue when compared with the Model 1 results. As a result,
we only display the estimates for the first 40 weeks for Model
3 and Model 1, since the uncertainty associated with the final
four weeks of pregnancy in Model 3 is extremely large.

When compared with Figure 2, the Model 1 results
of Figure 3 are very similar in terms of identified critical
windows. Due to the increased sample size introduced by
extending to all women in the region, we obtain more precise
estimates of the true effects. This can be seen by observing
that the lengths of the credible intervals in Figure 3 are
significantly shorter than those in Figure 2.

We use the deviance information criterion (DIC) in the
Bayesian setting to describe model fit. The DIC is useful
in comparing competing hierarchical models based on their
overall fit and complexity, with smaller values indicating
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Table 2: Included covariate results for the model in (1) using the DS weekly exposures for all women in TDSHS health service region 11.

Covariate Mean SD Percentiles
0.025 0.50 0.975

Intercept∗∗ 7.263 0.790 5.656 7.284 8.763
Gestational age (weeks)∗∗ −0.243 0.014 −0.270 −0.243 −0.216
Season of birth

Spring versus winter 0.047 0.074 −0.098 0.046 0.191
Summer versus winter 0.006 0.082 −0.152 0.006 0.167
Fall versus winter∗∗ 0.127 0.056 0.020 0.127 0.240

Female versus male baby∗∗ 0.226 0.031 0.166 0.226 0.287
Previous live births

One versus none∗∗ −0.244 0.039 −0.320 −0.244 −0.168
≥Two versus none∗∗ −0.344 0.044 −0.429 −0.343 −0.259

Maternal age group
10–19 versus 30–34 0.053 0.061 −0.065 0.053 0.173
20–24 versus 30–34 0.023 0.049 −0.074 0.023 0.120
25–29 versus 30–34 −0.013 0.048 −0.108 −0.013 0.082
35–39 versus 30–34 0.038 0.067 −0.094 0.038 0.169
≥40 versus 30–34 0.144 0.121 −0.101 0.145 0.375

Maternal race
Black versus white∗∗ 0.484 0.158 0.159 0.488 0.787
Hispanic versus white 0.067 0.058 −0.044 0.067 0.183
Other versus white 0.292 0.151 −0.014 0.295 0.576

Maternal education
High school versus <high school∗∗ −0.140 0.038 −0.214 −0.140 −0.064
>High school versus <high school∗∗ −0.175 0.043 −0.259 −0.176 −0.091

Birth year
2002 versus 2001 −0.109 0.482 −0.933 −0.152 0.958
2003 versus 2001 0.145 0.482 −0.673 0.100 1.212
2004 versus 2001 0.112 0.483 −0.709 0.067 1.184

The (∗∗) items have 95% credible intervals which do not include zero.TheMC error for themeans ranged from 0.0003 to 0.0164 with an average value of 0.0031.

a better model [24].The effective number of parameters (𝑝
𝐷
)

describes the number of parameters being used in a particular
model, helping to give insight to the model complexity. The
DIC for Model 2 is 7,343.33 (𝑝

𝐷
= 31.56), while for Model 1

it is 7,347.08 (𝑝
𝐷
= 35.06). Differences of more than seven

suggest that the model with smaller DIC is preferred. For
reference, the DIC for Model 3 is 7,395.42 (𝑝

𝐷
= 71.97),

which shows its complete failure to efficientlymodel low birth
weight. Models 1 and 2 have essentially the same DIC and
𝑝
𝐷
values, but it is clear from Figures 3 and 4 that Model 1

is preferred due to its ability to more accurately identify the
susceptible periods of exposure.

4. Conclusions

The model utilized in this paper allows us to specifically
identify time periods during the pregnancy where increased
exposure to ambient ozone adversely affects the resulting
physical development of the child in terms of low birth
weight. Low birth weight is known to lead to adverse and
long-lasting health effects. Weeks late in the second trimester

of pregnancy appear to be the most impactful with respect
to the association between low birth weight and ambient
ozone exposures. A number of alternative pollution metrics
are available which attempt to fill in the spatial and temporal
domains across a region for many common pollutants. We
consider the CMAQ and DS products in the analysis and,
based on our results, conclude that theDSmodelmore closely
resembles the AQS product with respect to health effect
estimation and is therefore preferred in the low birth weight
setting. The risk assessment estimates associated with the
CMAQ metric have longer credible intervals on average and
less resemble theAQS results.These results suggest that in the
environmental health setting, calibrating the CMAQ output
is important for future studies if working with a pollutant
well represented by AQS data. This calibrated CMAQ output
then gives similar results to the AQS data while minimizing
variability in those results.The full spatial-temporal coverage
of the CMAQ output is what allows the DS model to provide
this calibrated output across the US.

Based on these findings, we extend the analysis to the
entire TDSHS health service region 11 in Texas from 2001
to 2004 and identify the critical pregnancy weeks for birth
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Figure 4: Susceptible windows of exposure results from models 1, 2, and 3 using the DS weekly exposures for all women in TDSHS health
service region 11. Posterior medians and 95% credible intervals are displayed. Significant effects are shown with dotted lines and solid circles.

weight. A clearer picture of the association between ambient
ozone levels and low birth weight emerges as a result of
the full spatial-temporal coverage of the DS output. Use of
the metric allows us to include women who live in isolated
parts of the region where ozone levels are not monitored
while representing results we would expect to see if pollution
monitors were located in these areas. These results would
not be possible working with the AQS data alone. Based
on the similarities with the AQS data results, the decreased
credible interval lengths, and the excellent spatial-temporal
coverage, we recommend use of the DS model output
(http://www.epa.gov/esd/land-sci/lcb/lcb faqsd.html) in epi-
demiologicmodels where AQSmonitoring data are not avail-
able or are limited.The calibrated CMAQ output provided by

the DS product is important for future studies of populations
in regions where little pollution information exists.

Overall, it does appear that increased ambient ozone
pollution exposure during the pregnancy is associated with a
significant increase in the probability of low birth weight for
the child. Use of the probit regressionmodel allows for amore
detailed analysis of these time periods that is not possible
when the standard epidemiologicmodels are used.Themodel
performs similarly to the standard epidemiologic model in
terms of model selection criterion but is preferred due to its
ability to specifically identify the susceptible periods of the
pregnancy. This research further strengthens the evidence of
the link between air pollution exposure and adverse birth
outcomes while extending the results for low birth weight.

http://www.epa.gov/esd/land-sci/lcb/lcb_faqsd.html
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